翻訳と辞書
Words near each other
・ Laye Department
・ Layeh
・ Layen
・ Layen-e Kohneh
・ Layene
・ Layeni
・ Layer
・ Layer (electronics)
・ Layer (object-oriented design)
・ Layer 2 Forwarding Protocol
・ Layer 2 MPLS VPN
・ Layer 2 Tunneling Protocol
・ Layer 8
・ Layer Breton
・ Layer by Layer
Layer by layer
・ Layer cake
・ Layer cake (disambiguation)
・ Layer Cake (film)
・ Layer Cake (novel)
・ Layer cake representation
・ Layer de la Haye
・ Layer element
・ Layer four traceroute
・ Layer group
・ Layer Jump Recording
・ Layer Marney
・ Layer Marney Tower
・ Layer of rods and cones
・ Layer Pyramid


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Layer by layer : ウィキペディア英語版
Layer by layer

Layer-by-Layer (LbL) deposition is a thin film fabrication technique. The films are formed by depositing alternating layers of oppositely charged materials with wash steps in between. This can be accomplished by using various techniques such as immersion, spin, spray, electromagnetism, or fluidics as recently reviewed by J. J. Richardson et al. The first implementation of this technique is attributed to J. J. Kirkland and R. K. Iler of DuPont, who carried it out using microparticles in 1966. The method was later revitalized by the discovery of its applicability to a wide range of polyelectrolytes by Prof. Gero Decher at Johannes Gutenberg-Universität Mainz. A simple representation can be made by defining two oppositely charged polyions as + and -, and defining the wash step as W. To make an LbL film with 5 bilayers one would deposit W+W-W+W-W+W-W+W-W+W-W, which would lead to a film with 5 bilayers, specifically + - + - + - + - + - .
It is important to note that the representation of the LbL technique as a multilayer build-up based solely on electrostatic attraction is a simplification. As was demonstrated by Prof. Nicholas A. Kotov at Oklahoma State University–Stillwater (now at the University of Michigan), other interactions are involved in this process, including hydrophobic attraction. In general terms, multilayer build-up is enabled by multiple attractive forces acting cooperatively, typical for high-molecular weight building blocks, while electrostatic repulsion provides self-limitation of the absorption of individual layers. This range of interactions makes it possible to extend the LbL technique to hydrogen-bonded films, nanoparticles, similarly charged polymers, hydrophobic solvents, and other unusual systems. The bilayers and wash steps can be performed in many different ways including dip coating, spin-coating, spray-coating, flow based techniques and electro-magnetic techniques.〔 The preparation method distinctly impacts the properties of the resultant films, allowing various applications to be realized.〔 For example, a whole car has been coated with spray assembly, optically transparent films have been prepared with spin assembly, etc.〔 Characterization of LbL film deposition is typically done by optical techniques such as dual polarisation interferometry or ellipsometry or mechanical techniques such as QCM or QCMD.
LbL offers several advantages over other thin film deposition methods. LbL is simple and can be inexpensive. There are a wide variety of materials that can be deposited by LbL including polyions, metals, ceramics, nanoparticles, and biological molecules. Another important quality of LbL is the high degree of control over thickness, which arises due to the variable growth profile of the films, which directly correlates to the materials used, the number of bilayers, and the assembly technique.〔 By the fact that each bilayer can be as thin as 1 nm, this method offers easy control over the thickness with 1 nm resolution.
LbL has found applications〔 in corrosion control, biomedical applications, ultrastrong materials, and many more.
== See also ==

* Atomic layer deposition

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Layer by layer」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.